A Novel Cartesian Implementation of the Direct Simulation Monte Carlo Method
نویسندگان
چکیده
A new Cartesian implementation of the direct simulation Monte Carlo (DSMC) method, named the hypersonic aerothermodynamics particle (HAP) code, is presented. This code is intended for rapid setup and simulation of rarefied flow problems, and as a framework for evaluating new physical models and numerical techniques. Unique features include the use of nonuniform Cartesian adaptive subcells, a collision probability modification to reduce errors associated with spatial averaging in collision probabilities, and automatic planar element approximation of analytically defined two or three-dimensional surface geometries. In this work, simulations are performed using both HAP and an established DSMC code for a rarefied hypersonic flow over a flat plate, and excellent overall agreement is found. Additional simulations are employed to demonstrate reduced dependence on cell size through a proposed collision probability modification. Results are also presented for a threedimensional HAP simulation of hypersonic flow over a blunted cone, and reasonably good agreement with experimental data is observed.
منابع مشابه
Development of a novel method in TRMC for a Binary Gas Flow Inside a Rotating Cylinder
A new approach to calculate the axially symmetric binary gas flow is proposed Dalton’s law for partial pressures contributed by each species of a binary gas mixture (argon and helium) is incorporated into numerical simulation of rarefied axially symmetric flow inside a rotating cylinder using the time relaxed Monte-Carlo (TRMC) scheme and the direct simulation Monte-Carlo (DSMC) method. The res...
متن کاملKinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts
Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...
متن کاملSiemens primus accelerator simulation using EGSnrc Monte Carlo code and gel dosimetry validation with optical computed tomography system by EGSnrc code
Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. Monte Carlo modeling of the Siemens Primus linear accelerator in 6 MeV beams was used. Square field size of 10 × 10 cm2 produced by the jaws was compared with TLD. Head simulation of Siemens accele...
متن کاملProject Time and Cost Forecasting using Monte Carlo simulation and Artificial Neural Networks
The aim of this study is to present a new method to predict project time and cost under uncertainty. Assuming that what happens in projects implementation which is expressed in the form of Earned Value Management (EVM) indicators is primarily related to the nature of randomness or unreliability, in this study, by using Monte Carlo simulation, and assuming a specific distribution for the time an...
متن کاملDetermination of the Energy Windows for the Triple Energy Window Scatter Correction Method in Gadolinium-159 Single Photon Emission Computed Tomography Using Monte Carlo Simulation
Introduction: In radionuclide imaging, object scatter is one of the major factors leading to image quality degradation. Therefore, the correction of scattered photons might have a great impact on improving the image quality. Regarding this, the present study aimed to determine the main and sub-energy windows for triple energy window (TEW) scatter correction method usin...
متن کامل